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We introduce the link-space formalism for analyzing network models with degree-degree correlations. The
formalism is based on a statistical description of the fraction of links li,j connecting nodes of degrees i and j.
To demonstrate its use, we apply the framework to some pedagogical network models, namely, random
attachment, Barabási-Albert preferential attachment, and the classical Erdős and Rényi random graph. For
these three models the link-space matrix can be solved analytically. We apply the formalism to a simple
one-parameter growing network model whose numerical solution exemplifies the effect of degree-degree
correlations for the resulting degree distribution. We also employ the formalism to derive the degree distribu-
tions of two very simple network decay models, more specifically, that of random link deletion and random
node deletion. The formalism allows detailed analysis of the correlations within networks and we also employ
it to derive the form of a perfectly nonassortative network for arbitrary degree distribution.
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Networks—in particular large networks with many nodes
and links—are attracting widespread attention. The classic
reviews �1–3� with their primary focus on structural proper-
ties have been followed up by more recent ones addressing
the role of dynamics, such as spreading and synchronization
processes on networks, as well as the role of weights and
mesoscopic structures, i.e., cliques and communities, within
networks �4,5�. Although several different measures for char-
acterizing networks have been presented, for example, in a
recent survey �6�, the simple concept of vertex degree re-
mains unrivalled in its ability to capture fundamental net-
work properties. When comparing the degrees of connected
vertices, however, one often finds that they are correlated, a
quality that gives rise to a rich set of phenomena. Degree
correlations constitute a central role in network characteriza-
tion and modeling but, in addition to being important in their
own right, also have substantial consequences for dynamical
processes unfolding on networks. Given the increasing cur-
rent interest in network dynamics, understanding structural
correlations remains important and timely.

In this paper we provide a detailed mathematical formal-
ism for modeling degree-degree correlations within stochas-
tically evolving, nonequilibrium networks. It is built around
a statistical description of internode linkages as opposed to
single-node degrees. While correlations have been character-
ized in empirical and model networks, most works devoted
to analytical calculations of correlations in models, as
pointed out in �7�, have been performed only for particular
cases. We start by providing a brief overview of degree cor-
relations for network structure and dynamics in Sec. I and
discuss how the work presented relates to existing studies.
The link-space formalism, which lies at the core of this pa-
per, is introduced in Sec. II. The formalism comprises a mas-
ter equation description of the evolution of a specific matrix

construction, termed the link-space matrix, which character-
izes degree-degree correlations within a network. The for-
malism can be implemented in a variety of ways. To demon-
strate its use, we apply it to two well-known, nonequilibrium
examples, namely random attachment and Barabási-Albert
�BA� preferential-attachment networks �8,9� in Sec. II, and
solve the so-called link-space matrix analytically for the
steady state of these systems. In Sec. II, we also apply it to
the classical equilibrium random graph of Erdős and Rényi
�10� �ER� which, interestingly, requires a full, time-
dependent solution of the link-space master equations. The
cumulative link-space introduced in Sec. II aids comparison
between simulated and analytically derived link-space matri-
ces and could, in principle, be applied to empirical networks
to better ascertain their degree correlations. Analytic deriva-
tion of link-space matrices allows detailed analysis of the
degree-degree correlations present within networks as is
demonstrated in Sec. III. Within Sec. III, we also show how,
for an arbitrary degree distribution, a link-space matrix can
be derived which has no correlations present, i.e., the link-
space is representative of a perfectly nonassortative network
with that degree distribution. We then consider the counter-
intuitive prospect of finding steady states of decaying net-
works in Sec. IV. In Sec. V, we introduce a simple one-
parameter network growth algorithm, which is able to
produce networks whose degree distributions exhibit a wide
range of power-law exponents via a redirection process simi-
lar to the model by Krapivsky and Redner �11�. The model is
interesting in its own right in the sense that it makes use of
only local information about node degrees. Here the link-
space formalism allows us to identify the transition point at
which higher exponent degree distributions switch to lower
exponent distributions with respect to the BA model. We
conclude in Sec. VI. To maintain readability, we postpone
the more detailed mathematical derivations to Appendixes
A–C, and refer to them where appropriate.*d.smith3@physics.ox.ac.uk
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I. OVERVIEW OF DEGREE CORRELATIONS

A discussion of correlations might naturally start with the
phenomenon of clustering. The highly influential paper of
Barabási and Albert and many subsequent papers focussed
on the modeling and analysis of models which replicate
power-law degree distributions observed in many real-world
systems �3,8,12�. However, the BA preferential attachment
mechanism �discussed in Sec. II B� lacks certain key features
observed in many of those systems, one such feature being
clustering. Clustering is an important local statistic in many
networks and reflects the connectedness of neighbors of a
node. In a social context, if person Y is friends with both X
and Z, one might expect some kind of link between X and Z.
The measurement of the connectedness of neighbors of
nodes is the clustering coefficient. This is often averaged
over all nodes and a single value is given as the average
clustering coefficient of the network �2�. Some node labeled
� in an arbitrary undirected network has k� neighbors, be-
tween which there could be a possible k��k�−1� /2 links. If y
of these are actually present, the clustering of node � is
given as C=2y / �k��k�−1��. The clustering nature of a net-
work can also be expressed as the average over all nodes of
degree k giving a clustering distribution �or spectrum�, Ck.
As noted by Klemm and Eguíluz, in a BA network, the av-
erage clustering of a given node is independent of its degree
�13�, in contrast to the findings of Fronczak et al. �14�, and
tends to zero in the large-size �thermodynamic� limit. A net-
work model which does exhibit high clustering is that of
Watts and Strogatz in which a random rewiring process is
carried out on an initially regular lattice �15�. The networks
generated by such a process feature short average shortest
path lengths between node pairs �the small-world effect�.
However, these networks do not exhibit a power-law degree
distribution. Subsequently, there have been many efforts to
build models which can encompass both of these features
such as the nonequlibrium growing network model proposed
by Klemm and Eguíluz in which nodes are deactivated and
are unable to gain additional connections �13�. Other models
such as that of Holme and Kim �16� and that introduced by
Toivonen et al. �17� modified the original BA preferential
attachment mechanism, allowing further links between the
new node and neighbors of the preferentially selected node.
The social network model of Toivonen et al. produced com-
munities with dense internal connections. Szabó et al. formu-
lated a scaling assumption and a mean-field theory of clus-
tering in growing scale-free networks and applied it to the
Holme and Kim mechanism �18�. As discussed by Boguñá
and Pastor-Satorras, clustering in networks is closely related
to degree correlations �19�. In fact, based on the work of
Szabó et al., Barrat and Pastor-Satorras introduced a frame-
work for computing the rate equation for two vertex correla-
tions in the continuous degree and continuous time approxi-
mation �7�. We shall now describe these degree correlations.

Vertex degree correlations are measures of the statistical
dependence of the degrees of neighboring vertices in a net-
work. In general, n-vertex degree correlations, or n point
correlations, can be fully characterized by the conditional
probability distribution P�k1 ,k2 , . . . ,kn �k=n� that a vertex of
degree k=n is connected to a set of n vertices with degrees

k1 ,k2 , . . . ,kn. Two- and three-point correlations are of par-
ticular interest in complex networks as they can be related to
network assortativity and clustering, respectively. More spe-
cifically, two vertex degree correlations �two-point correla-
tions� can be expressed as conditional probability P�k� �k�
that a vertex of degree k is connected to a vertex of degree
k�. Similarly, three vertex degree correlations �three-point
correlations� can be fully characterized by the conditional
probability distribution P�k� ,k� �k� that a vertex of degree k
is connected to both a vertex of degree k� and a vertex of
degree k�. This implies that the degrees of neighboring nodes
are not statistically independent. Reliable estimation of
P�k� �k� and P�k� ,k� �k� requires a large amount of data and,
in practice, one often resorts to related measures. Instead of
P�k� �k�, the average degree of nearest neighbors, �knn�k, of
nodes with degree k is often measured. This can be formally
related to P�k� �k� �19,20�. If �knn�k increases with k, high
degree vertices tend to connect to high degree vertices. A
network with this property is described as assortative or dis-
playing positive degree correlations. If �knn�k decreases with
k, high degree vertices tend to connect to low degree vertices
�disassortative or negatively correlated� �19,21�. An alterna-
tive to �knn�k is to use a normalized Pearson’s correlation
coefficient of adjacent vertex degrees providing a single
number measure of assortativity as suggested by Newman to
further classify networks �3,21�. These approaches are dis-
cussed in more detail in Sec. III. To characterize three point
correlations, instead of using P�k� ,k� �k�, one can employ the
clustering spectrum Ck, the average clustering coefficient of
nodes with degree k, which can be related to P�k� ,k� �k� �19�.
In many real-world networks such as the Internet �20�, the
clustering spectrum is a decreasing function of degree and
while this is sometimes interpreted as a signature of hierar-
chical structure in a network, Soffer and Vázquez suggested
that this is a consequence of degree-degree �two point� cor-
relations that enter the definition of the standard clustering
coefficient �22�. The authors introduced a different definition
for the clustering coefficient that does not have the degree-
correlation “bias,” i.e., a three-point correlation measure that
filters out two-point correlations. Following the suggestion
of Maslov et al. �23� that these phenomena might arise from
topological constraints rather than evolutionary mechanisms,
Park and Newman demonstrated that dissasortative degree
correlations observed in the Internet could be explained via
the restriction of there being no double edges between nodes
�24�. In contrast, social networks have been found to be as-
sortative �17�. Similarly, Catazaro et al. observed that the
network of scientific collaborations was assortative and pre-
sented a model to reproduce this feature �25�.

Functional processes occurring on networks are influ-
enced by degree correlations, highlighting the importance of
their role in complex networks. Eguíluz and Klemm consid-
ered highly clustered scale-free networks and showed that
correlations play an important role in epidemic spreading
�26�. The time average of the fraction of infected individuals
in the steady state undergoes a phase transition at a finite
critical infection probability. They related this critical thresh-
old to the transmission probability and the mean degree of
nearest neighbors of all nodes in the system, �knn�, the con-
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jectured criterion for epidemic spreading being related to the
product of the two. The value �knn� scales with the system
size in their highly clustered scale-free network more slowly
than in the random scale-free network which is a by-product
of the dissasortativity of the system. Consequently, whereas
in random scale-free networks in which viruses with ex-
tremely low spreading probabilities can prevail, the absence
of connections between highly connected nodes in highly
clustered scale-free networks protects the system against epi-
demics �26�. Interestingly, Boguná et al. assert that any
scale-free network of an appropriate exponent will have di-
verging �knn� in the thermodynamic limit, resulting in no
threshold properties for epidemic spreading regardless of the
correlations within the network �27� in contrast to the earlier
suggestion of Boguná and Pastor-Satorras �28�. Brede and
Sinha induced correlations to Erdős-Rényi and scale-free
networks by rewiring them appropriately to examine their
dynamic stability. They mapped the adjacency matrices into
Jacobian matrices and examined the largest eigenvectors, re-
flecting the decay rates of perturbations about an equilibrium
state. They found that positive correlations reduced their dy-
namical stability �29�. Similarly, Bernardo et al. induced
negative degree correlations in scale-free networks whose
links couple nonlinear oscillators. Through analysis of the
eigenratio of the Laplacians of such networks, they found
that network synchronizability improved as the network was
made more dissassortative �30�. Based on this result, they
conjectured that negative degree correlations may emerge
spontaneously as the networked system attempts to become
more stable �31�. The same authors found similar results to
hold also for weighted networks �30�. Maslov and Sneppen
found that in “interaction and regulatory networks, links be-
tween highly connected proteins were systematically sup-
pressed, whereas those between highly connected and low-
connected pairs of proteins were favoured,” a topological
organization that increases the overall robustness of the net-
work to perturbations through “localising deletous perturba-
tions” �32�. This is consistent with the findings of Berg et al.
whose model of the evolution of protein interaction networks
exhibited disassortativity consistent with their empirical
findings �33�.

Krapivsky et al. used a master equation method, in which
rate equations for the densities of nodes of a given degree are
employed, to investigate the steady state of the BA preferen-
tial attachment mechanism �34�. As illustrated in Sec. II, this
is a general method which can be applied to various growing
network models. To extend the method to encompass two-
point correlations, Krapivsky and Redner applied the ap-
proach to the number Nk,l of nodes with total degree k con-
nected to ancestor nodes of total degree l in a directed
network �11�. They solved analytically the master equations
for the steady state of a specific directed network growth
model, namely the growing with redirection algorithm �11�,
similar to the mixture model introduced in Sec. V. Boguñá
and Pastor-Satorras considered a link orientated description
of two point correlations. For undirected graphs, they intro-
duced a symmetric matrix whose elements Ek,l represent the
number of links connecting nodes degree k to nodes degree l
�19�. Boguñá and Pastor-Satorras related this matrix to the
joint degree distribution P�k� �k� but noted that finite size

effects make empirical evaluation of the matrix difficult, sug-
gesting the use of the spectrum �knn�k as a more suitable
observable. Here, we introduce a similar matrix construction
which can be applied to both the undirected and directed
scenarios. We call this the link-space matrix. We show that it
is possible to construct master equations to model the evolu-
tion of this matrix which can be applied to a wide variety of
network evolution algorithms retaining important degree cor-
relations which can be critical to the network’s development.
This framework is termed the link-space formalism and is
introduced in Sec. II. In certain cases, these master equations
can be solved analytically providing a full time-dependent
solution or a steady-state solution of the link-space matrix of
the network. From these analytically derived link-space ma-
trices both the degree and joint degree distributions can be
obtained allowing accurate analysis of degree correlations.
The formalism also allows the derivation of the form of net-
works of predetermined correlation properties such as a per-
fectly nonassortative network �Sec. III A� and the derivation
of the steady-state solutions to network decay algorithms
�Sec. IV�. The formalism can also be employed in its itera-
tive guise to provide approximations to the steady state when
an analytic solution is not possible such as for the mixture
model of Sec. V.

One- and two-point correlations have natural physical
counterparts within the network, specifically the nodes and
links. The one-point correlations P�k� are simply related to
the fraction of nodes in the network with degree k. As de-
scribed in detail within this paper, two-point correlations
P�k� �k� are related to the fraction of links within a network
connecting nodes of degree k with nodes of degree k�, hence
the term link-space. One can extend the analysis to three-
point correlations, P�k� ,k� �k�. This would be related to the
number �fraction� of pairs of links within a network sharing
a common node of degree k, the remaining link ends being
connected to nodes of degrees k� and k� and all possible
“open triangles” within the network would have to be con-
sidered. Clearly, the process can be extended to arbitrary n
point correlations although the physical interpretation of the
appropriate measurable quantities will become increasingly
obscure.

II. NODE-SPACE AND LINK-SPACE

We now introduce the link-space formalism. Consider a
simple, growing, nonequilibrium network in which one node
is added to a network at each time step and this node is
connected to the existing network with exactly m undirected
links. The process is governed by an attachment probability
kernel � j, defined as the probability that a specific, newly
introduced link attaches to any node of degree j within the
existing network. At some time t there exist Xi�t� nodes of
degree i and we wish to compute the expected number of
nodes with degree i at time t+1. The node-space master
equations can be expressed in terms of the attachment ker-
nels and are written

�Xi�t + 1�� = Xi�t� + m�i−1�t� − m�i�t�, i � m ,

�Xm�t + 1�� = Xm�t� + 1 − m�m�t� , �1�
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since a new node of degree m is added to the existing net-
work at each time step and there are no nodes with degree
less than m.

So far we have said nothing about the attachment mecha-
nism and have made the easily geneneralizable restriction
that only one node is being added per time step with undi-
rected links. We now follow a similar analysis, but retain the
node-node linkage correlations that are inherent in many
real-world systems �11,21,35�. Consider any link in a general
network—we can describe it by the degrees of the two nodes
that it connects. Hence we can construct a matrix L�t� such
that the element Li,j�t� is equal to the number of links from
nodes of degree i to nodes of degree j for i� j at some time
t. To ease the mathematical analysis below, the diagonal el-
ement Li,i�t� is defined to be twice the number of links be-
tween nodes of degree i for the undirected graph, a math-

ematical convienience also observed by Boguñá and Pastor-
Satorras �19�. For undirected networks L�t� is symmetric and
�i,jLi,j�t�=2M�t�, twice the total number of links M�t� in the
network which is simply mt when introducing m links per
time step. The matrix, L, represents a surface describing
degree-degree correlations in the network �see Figs. 1–3� and
is called the link-space matrix.

Consider one of the newly introduced links, one end of
which is attached to the new node. The probability of select-
ing any node of degree i−1 within the existing network for
the other end to attach to is given by the attachment prob-
ability �i−1�t�. Suppose an i−1 node is selected. The fraction
of nodes of degree i−1 that are connected to nodes of degree
j is
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FIG. 1. �Color online� Top: the analytically derived, normalized
link-space matrix for the random attachment growth algorithm. This
could be filled to arbitrary size but is truncated to maximum degree
of 40 here. Bottom: comparison of the cumulative link-space ma-
trices for the analytic solution and a simulation of the algorithm.
The simulation comprises an ensemble average of 100 networks
grown to 108 nodes. The maximum degree obtained was 37. The
first 30 rows �i values� of the cumulative link-space are illustrated
and finite-size effects are noticable at high j.
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FIG. 2. �Color online� Top: the analytically derived, normalized
link-space matrix for the preferential attachment growth algorithm.
This could be filled to arbitrary size but is here truncated to maxi-
mum degree of approximately 105. Bottom: comparison of the cu-
mulative link-space matrices for the analytic solution and a simula-
tion of the algorithm. The simulation comprises an ensemble
average of 1000 networks each grown to 107 nodes. The maximum
degree obtained was 17 609. Various rows �i values� from 1 to 3500
of the cumulative link-space are illustrated and the effects of the
finite nature of the simulation are apparent.
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Li−1,j�t�
�i − 1�Xi−1�t�

.

The expected increase in links from nodes of degree i to
nodes of degree j, through the attachment of the new node to
a node of degree i−1, is given by

�i−1�t�Li−1,j�t�
Xi−1�t�

.

Since each link has two ends, the value Li,j can increase by a
connection to an �i−1�-degree node which is in turn con-
nected to a j-degree node, or by connection to an
�j−1�-degree node which is in turn connected to an i-degree
node. We write master equations governing the evolution of

the link-space matrix as the evolution of the expected num-
ber of links from i to j degree nodes, i.e., the number of i↔ j
links. This is the link-space formalism and is written for the
�generalizable� case of adding one new node with m undi-
rected links to the existing network as

�Li,j�t + 1�� = Li,j�t� +
m�i−1�t�Li−1,j�t�

Xi−1�t�
+

m� j−1�t�Li,j−1�t�
Xj−1�t�

−
m�i�t�Li,j�t�

Xi�t�
−

m� j�t�Li,j�t�
Xj�t�

, i, j � m ,

�Lm,j�t + 1�� = Lm,j�t� + m� j−1�t� +
m� j−1�t�Lm,j−1�t�

Xj−1�t�

−
m�m�t�Lm,j�t�

Xm�t�
−

m� j�t�Lm,j�t�
Xj�t�

, j � m .

�2�

There are a variety of ways in which both the node-space
and link-space master equations can be approached. For ex-
ample, a full, time-dependent solution could be investigated
as in Sec. II C or, using appropriate initial conditions, the
equations can be iterated over the required time scale as in
Sec. V. We can also investigate the possibility of a steady
state of the algorithm under scrutiny. To do so, we assume
that there exists a steady state in which the degree distribu-
tion remains static and investigate a solution �47�. Under this
assumption, the fraction of nodes ci�t�=Xi�t� /N�t� which
have a given degree remains constant such that �Xi�t+1��
−Xi�t�	dXi /dt=ci when one new node is added per time
step �N�t�= t�. It is also assumed that in the steady state, the
attachment kernels are static too. We drop the notation “�t�”
to indicate the steady state and can rewrite Eq. �1� as

ci = m�i−1 − m�i, i � m ,

cm = 1 − m�m. �3�

The fraction of links between nodes of degree i and nodes of
degree j can be expressed as the normalized link-space ma-
trix, li,j�t�=Li,j�t� /M�t�, which sums to 2 in the undirected
case. In the steady state we can assume that these values are
static and can rewrite the link-space master equation �Eq.
�2�� as

li,j =

�i−1

ci−1
li−1,j +

� j−1

cj−1
li,j−1

1

m
+

�i

ci
+

� j

cj

, i, j � m ,

lm,j =

� j−1

cj−1
lm,j−1 +

� j−1

m

1

m
+

�m

cm
+

� j

cj

, j � m . �4�

The notation “�t�” has again been dropped to indicate the
steady state and here the generalizable situation of adding
one new node per time step is considered.
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FIG. 3. �Color online� Top: the analytically derived, normalized
link-space matrix for the Erdős and Rényi �ER� random graph with
mean degree equal to 5. This could be filled to arbitrary size but is
here truncated to a maximum degree of 30. Bottom: comparison of
the cumulative link-space matrices for the analytic solution and a
simulation of the algorithm. The simulation comprises an ensemble
average of 500 networks each consisting of 107 nodes. The prob-
ability that a link exists between any pair of nodes is �=5�10−7

and the maximum degree obtained was 25. The first 20 rows �i
values� of the cumulative link-space are illustrated and, again, the
finite nature of the simulation is apparent for high j.
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To apply the link-space formalism one starts by specify-
ing the model dependent attachment kernel �i. To investi-
gate a time-dependent solution, the attachment kernel is sub-
stituted into Eqs. �1� and �2�. To investigate a steady-state
solution, the kernel is substituted into Eqs. �3� and �4� to
yield recurrence relations for ci and li,j, respectively, which
can be solved analytically in some cases. The number of
i-degree nodes is given by Xi�t�= i−1�kLi,k�t� which allows us
to retrieve the degree distribution from the normalized link-
space matrix:

ci�t� =
M�t��k=1

� li,k�t�
iN�t�

. �5�

Degree distributions of empirically observed or simulated
networks typically become dominated by noise at large de-
grees reflecting the small probabilities associated with these
values occurring. In the link-space, the situation is exacer-
bated and the high i , j limit reflects connections between
these high degree nodes. This is, of course, rarer than the
existence of nodes of either degree. Following the conven-
tional approach which is applied to degree distributions �2�,
we can use a cumulative representation of the link-space to
address this issue. The use of a cumulative binning technique
averages over stochasticity in the system. With degree distri-
butions, regression techniques �curve fitting� applied to the
cumulative distribution is used to obtain a more accurate
description of the actual degree distribution than would be
obtained from fitting to the empirical distribution itself �2�.
The process can be similarly applied in the link-space. Sur-
face fitting could be applied to the cumulative link-space
obtained from an empirical network. From the cumulative
fitted surface, a more accurate representation of the actual
link-space could be obtained for the empirical network, from
which a better representation of the network’s correlations
could be obtained. This process also allows for comparison
between simulated and analytically derived link-space matri-
ces. We define the cumulative link-space matrix, cumli,j to be

cumli,j = �
x=i

�

�
y=j

�

lx,y . �6�

Note that we have not lost generality in that given a cumu-
lative link-space matrix, the actual link-space can be derived
using variations on the following:

li,j = cumli,j − cumli+1,j − cumli,j+1 + cumli+1,j+1. �7�

The computation involved when evaluating cumli,j can be cut
down considerably by first evaluating cuml1,1, which in the
undirected graph is equal to 2. The leftmost column �or top
row� for i�1 can then be evaluated as

cumli,1 = cumli−1,1 − �
x=1

�

li−1,x. �8�

Note that the second term on the right-hand side is a row
sum of the normalized link-space matrix and, hence, quickly
evaluated. Indeed this row sum can be related to the degree
distribution ci−1 from Eq. �5�. Subsequent elements can be
evaluated using the following simple identity:

cumli,j = cumli−1,j + cumli,j−1 − cumli−1,j−1 + li−1,j−1. �9�

We will now demonstrate the use of the link-space for-
malism to study a random attachment model and the
Barabási-Albert �BA� model using steady-state solutions and
the classical Erdős and Rényi random graph using a time-
dependent solution.

A. Random attachment model (steady-state solution)

Consider first a random-attachment model in which at
each time step a new node is added to the network and con-
nected to an existing node with uniform probability without
any preference �“Model A” in �8,9�� with one undirected link
such that m=1 and M�t�	N�t�= t. We assume a steady-state
solution and the attachment kernel is �i=Xi / t=ci. Substitut-
ing into Eq. �3�, we obtain the recurrence relation ci+1
=ci /2, which yields the familiar degree distribution ci=2−i.
Substituting into Eq. �4� yields the recurrence relation

li,j = �li−1,j + li,j−1�/3, i, j � 1,

l1,j = �cj−1 + l1,j−1�/3, j � 1, �10�

with l1,1=0. The exact solution for li,j is

li,j = �
x=2

j 
i − 1 + j − x

j − x
�

3�i+j−x�2�x−1� + �
x=2

i 
�i − 1 + j − x�
i − x

�
3�i+j−x�2�x−1� , i, j � 1,

l1,j = �
k=1

j−1

�3k2 j−k�−1, j � 1, �11�

where � x
y

� is the conventional combinatorial “choose” func-
tion. Further mathematical details are given in Appendix A.
We shall make use of this solution to investigate the corre-
lations of such a network in Sec. III. This normalized link-
space matrix is illustrated in Fig. 1 along with a comparison
to simulated networks using the cumulative link-space ma-
trix.

B. Barabási-Albert (BA) model (steady-state solution)

In the BA model �8,9�, at each time step a new node is
added to the network and connected to m existing nodes with
probabilities proportional to the degrees of those nodes, i.e.,
�i	 i yielding

�i�t� =
iXi�t�

� j jXj�t�
=

iXi�t�
2M�t�

	
iXi�t�
2mt

. �12�

We consider the scenario when the new node is added with
one undirected link, m=1, and the attachment kernel is well-
approximated by �i	 ici /2. Substituting this into Eq. �3�
yields the recurrence relation ci=

�i−1�ci−1

2 −
ici

2 = i−1
i+2ci−1, whose

solution is ci=
4

i�i+1��i+2� . Using the same substitution, the

link-space master equations yield the recurrence relations

li,j =
�i − 1�li−1,j + �j − 1�li,j−1

2 + i + j
, i, j � 1,
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l1,j =
�j − 1�cj−1 + �j − 1�l1,j−1

3 + j
, j � 1. �13�

The exact solution for li,j is obtained by algebraic manipula-
tion of the normalized link-space matrix using the previously
derived degree distribution �further mathematical details are
given in Appendix B� and is given by

li,j =
4�j − 1�!�i − 1�!

�j + i + 2�! �G�i + 1� + 2G�i� − 3G�i − 1�

+
1

2�
x=2

i

�x − 1��x + 6��G�i − x� − G�i − x − 1�� ,

�14�

where G�x� = � �j + x − 1�!
x!�j − 1�!

for x 
 0

0 for x � 0.
�

The first few rows of this matrix have the form

l1,j =
2�j + 6��j − 1�

j�j + 1��j + 2��j + 3�
,

l2,j =
2j�j − 1��j + 10� + 48

3j�j + 1��j + 2��j + 3��j + 4�
,

l3,j =
3j4 + 42j3 − 3j2 + 246j + 360

9j�j + 1��j + 2��j + 3��j + 4��j + 5�
. �15�

We shall use this solution to investigate the correlations with
this network in Sec. III. This normalized link-space matrix is
illustrated in Fig. 2 along with a comparison to simulated
networks.

C. Erdős and Rényi random graph (time-dependent solution)

The Erdős and Rényi �ER� classical random graph is the
quintessential equilibrium network model �2,10�. However,
to employ the link-space formalism, which tracks the evolu-
tion of a network’s correlation properties, we must model it
as an evolving, nonequilibrium network. To do so is a
straightforward process and the model procedes as follows.
At each time step, we add one new node to the existing
network. All possible links between the new node and all
existing nodes are considered and each is established with
probability �. That is, a biased coin toss �Bernoulli trial� is
employed for every node within the existing network to de-
cide whether a link is formed between it and the new node.
Conseqently the expected number of new, undirected links
with which the new node connects to the existing network is
�m�t��=�N�t−1�	�t and this would be described as an ac-
celerating network �36�. No new links are formed between
existing nodes. This model subsequently produces a network
in which the probability of a link existing between any pair
of nodes is simply � and is thus representative of the ER
random graph �10�. A network grown to t nodes will have
mean degree �t which will also be the expected degree of all

nodes in the network. While the random attachment and pref-
erential attachment models both have steady-state assymp-
totic behavior, clearly this model does not and a full, time-
dependent solution is required.

Using the random attachment probability kernel �i�t�
=Xi�t� /N�t�, the node-space master equation for the number
of nodes of degree i can be written

�Xi�t + 1�� = Xi�t� +
�m�t��Xi−1�t�

N�t�
−

�m�t��Xi�t�
N�t�

+ P�m�t� = i� .

�16�

The second term on the right-hand side reflects the expected
number of connections to i−1 degree nodes making them
nodes of degree i. The last term is the probability that the
new node itself is a node of degree i. This will be binomially
distributed and, if we assume that t is large, we can make a
Poisson approximation. Recalling that the fraction of nodes
of degree i is given by ci�t�=Xi�t� /N�t�=Xi�t� / t, we can re-
write Eq. �16� as

d�tci�t��
dt

= �ci−1�t� − �ci�t� +
e−�t��t�i

i!
. �17�

The time-dependent solution of Eq. �17� yields the degree
distribution for this model and is simply

ci�t� =
e−�t��t�i

i!
, �18�

which is what we would expect for the random graph with
mean degree of �t in the large size limit �37�. We can simi-
larly write the link-space master equation for this model:

�Li,j�t + 1�� = Li,j�t� +
�m�t���i−1�t�Li−1,j

Xi−1

+
�m�t��� j−1�t�Li,j−1

Xj−1
−

�m�t���i�t�Li,j

Xi

−
�m�t��� j�t�Li,j

Xj
+ i� j−1P�m�t� = i�

+ j�i−1P�m�t� = j� . �19�

The last two terms reflect the expected number of new i↔ j
links being formed between the new node and existing
nodes. Recalling that the normalized link-space matrix is
given by li,j�t�=Li,j�t� /M�t� where the number of links, M�t�,
at time t can be approximated as M�t�	�t2 /2 and making
use of the previously derived, time-dependent degree distri-
bution such that P�m�t�= j�=cj�t�, Eq. �19� can be rewritten
as

d

dt

�t2li,j�t�

2
� =

��t�2

2
�li−1,j�t� + li,j−1�t� − 2li,j�t��

+
2ijci�t�cj�t�

�t
. �20�

The solution to Eq. �20� is found by means of ansatz �the
choice of which is explained in Sec. III� and is
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li,j�t� =
2e−2�t��t�i+j−2

�i − 1�!�j − 1�!
. �21�

This is the normalized link-space matrix for a classical ran-
dom graph with a mean degree of �t in the large size limit
and this is illustrated in Fig. 3 where a comparison to a
simulation is also made.

III. DEGREE CORRELATIONS AND ASSORTATIVITY

The average nearest-neighbor degree �knn�i of nodes of
degree i can be easily obtained from the link-space matrix
and is given by

�knn�i =

�
j=1

�

jLi,j

�
j=1

�

Li,j

=

�
j=1

�

jli,j

�
j=1

�

li,j

. �22�

This is illustrated in Fig. 4 for the steady-state solutions of
the random attachment model, the BA model, and the ER
random graph. If the average nearest-neighbor degree �knn�i

is constant with respect to degree i, nonassortativity is im-
plied. Certainly, the random attachment curve continues to
increase, implying positive assortative mixing. The preferen-
tial attachment curve in Fig. 4 appears to asymptote to a
constant value �as was noted in �26�� although the fact that it
decreases initially illustrates that it is not perfectly nonassor-
tative. This is a feature that would not be captured using a
normalized Pearson’s correlation coefficient which would
suggest nonassortativity for this network �3,38�.

The link-space formalism allows us to address two-vertex
correlations in a more powerful way in that we can calculate
the conditional, two-point vertex degree distribution P�j � i�,
which has been traditionally difficult to measure �19�. We
can write this joint probability, i.e., the probability that a
randomly chosen edge is connected to a node of degree j
given that the other end is connected to a node of degree i, in

terms of the link-space matrix �normalized or not� as
P�j � i�=Li,j / �iXi�=Li,j /� j=1

� Li,j = li,j /� j=1
� li,j. For total number

of edges aproximately equal to the total number of nodes,
this can be approximated as li,j / �ici�. This is illustrated in
Fig. 5 for the scenarios of random and preferential attach-
ment where the nontrivial nature of the correlations present
within these networks is evident.

Consider selecting an edge at random in the network. If
we then select one end of this edge at random, the probabil-
ity that this node has degree j will be proportional to j since
higher degree nodes have, by definition, more links con-
nected to them than low degree nodes. Consider now only a
subset of all edges with one end attached to a node of degree
i. If there were no correlations present, the probability that
the other end is attached to a node of degree j is again pro-
portional to j �39�. The criterion of perfect nonassortativity
for a network with equal numbers of nodes and links can be
described as
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FIG. 4. �Color online� The mean degree of the nearest neighbors
�knn�i of nodes of degree i as a function of i for the analytic solu-
tions to the random attachment algorithm �Sec. II A�, the BA model
�Sec. II B�, and the ER random graph �Sec. II C�.
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other end is of degree i over the range i= �1,6 ,11,16, . . . ,51�. The
top plot is for the random attachment algorithm and the bottom is
preferential attachment. The criterion of nonassortativity of Eq. �23�
is denoted with red circles.
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P�j�i� =
jcj

2
, ∀ j . �23�

This criterion is illustrated in Fig. 5 for the random attach-
ment and BA models and confirms that neither is perfectly
nonassortative.

A. Perfect nonassortativity

It is interesting to ask whether a perfectly nonassortative
network can be generated. Assuming that such a network
will not have equal numbers of nodes and links, we must
rewrite the conditions of nonassortativity accordingly for to-
tal number of edges M:

P�j�i� = P�j� =
jXj

2M
=

jNcj

2M
. �24�

Recalling our definition of the normalized link-space matrix
that li,j =Li,j /M, we can express this conditional probability
P�j � i� in terms of this matrix as

P�j�i� =
Li,j

iXi
=

Mli,j

iNci
. �25�

As such, we can now write for li,j

li,j = 
 N

M
�2 icijcj

2
. �26�

That is, for any degree distribution, a normalized link-space
matrix can be found which is representative of a perfectly
nonassortative network �48�. This might provide an alterna-
tive to the network randomization technique of Maslov and
Sneppen to provide a “null model network” �32�. The expres-
sion of Eq. �26� provides the ansatz solution for the normal-
ized link-space matrix to the master equations for the ER
random graph in Sec. II C.

IV. DECAYING NETWORKS

Although somewhat counterintuitive, it is possible to find
steady states of networks whereby nodes and/or links are
removed from the system. Aside from the obvious situation
of having no nodes or edges left, we would like to investi-
gate the possible existence of a network configuration whose
link-space matrix and, subsequently, node degree distribution
are static with respect to the decay process. The concept that
decay processes are highly influential on a network’s struc-
ture has been considered before although this has typically
only been investigated in conjunction with simultaneous
growth �40–42�. Here we shall employ the link-space for-
malism to examine the effect of some simple, decay-only
scenarios, specifically the two simplest cases—random link
removal and random node removal.

A. Random link removal (RLR)

Consider an arbitrary network. At each time step, we se-
lect a fixed number, w, of links at random and remove them.
We shall implement the link-space formalism to investigate
whether or not it is possible that such a mechanism can lead

to stationary structure. Consider the link-space element Li,j�t�
denoting the number of links from nodes of degree i to nodes
of degree j. Clearly this can be decreased if an i↔ j link is
removed, i.e., a link that connects a degree i node to a degree
j node. Also, if a k↔ i link is removed and that i node has
further links to j degree nodes, then those that were i↔ j
links will now become �i−1�↔ j, similarly for k↔ j links
being removed. However, if the link removed is a k↔ �j
+1� link and that j+1 degree node is connected to a degree i
node, then when the j+1 node becomes a degree j node, the
�j+1�↔ i link will become a j↔ i link, increasing Li,j. Let us
assume that we are removing links at random from the net-
work comprising N�t� vertices and M�t� links. A nonrandom
link selection process could be incorporated into the master
equations using a probability kernel. The master equation for
this process can be written in terms of the expected increas-
ing and decreasing contributions:

�Li,j�t + 1�� = Li,j�t� + w�
k

Lk,j+1�t�jLi,j+1�t�
M�t��j + 1�Xj+1�t�

+ w�
k

Lk,i+1�t�iLi+1,j�t�
M�t��i + 1�Xi+1�t�

− w�
k

Lk,j�t��j − 1�Li,j�t�
M�t��j�Xj�t�

− w�
k

Lk,i�t��i − 1�Li,j�t�
M�t��i�Xi�t�

−
wLi,j�t�

M�t�
. �27�

This simplifies to

�Li,j�t + 1�� = Li,j�t� +
wjLi,j+1�t�

M�t�
+

wiLi+1,j�t�
M�t�

−
w�i − 1�Li,j�t�

M�t�
−

w�j − 1�Li,j�t�
M�t�

−
wLi,j�t�

M�t�
,

�28�

where the last term refers to the physical removal of an i↔ j
link.

To investigate the possibility of a steady-state solution, we
make a similar argument as before for growing networks but
this time for the process of removing w links per time step:

Li,j�t� = li,jM�t� = li,j�M0 − wt� ,

dLi,j

dt
= − wli,j 	 Li,j�t + 1� − Li,j�t� . �29�

The expression of Eq. �28� can be reduced to

li,j =
ili+1,j + jli,j+1

i + j − 2
. �30�

As such, �twice� the fraction of 1↔1 links, l1,1, does not
reach a steady state. This might be expected, as the removal
process for such links requires them to be physically re-
moved as opposed to the process by which the degree of the
node at one end of the link is being decreased. Therefore the
value l1,1 increases in time. However, we can investigate the
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properties of the rest of the links in the network which do
reach a steady state by neglecting these two node compo-
nents �see Appendix C for details�. The normalized link-
space matrix can be written for this system for i+ j�2 as

li,j =
A

2i+j

�i + j − 3�!
�i − 1�!�j − 1�!

. �31�

The summation over this link-space matrix does not con-
verge, i.e., �i� jli,j→�. However, we can still derive the de-
gree distribution using Eq. �5� and normalize this such that
�ici=1 �see Appendix C for details�:

c1 =
ln�2�

1 + ln�2�
,

ci =
1

�1 + ln�2��i�i − 1�
, i � 1. �32�

Consequently, the first moment of the distribution diverges
also, �iici= �k�→�. It is interesting that the process of ran-
domly removing links generates a network which exhibits
power-law scaling of exponent 2, corresponding to a degree
distribution significantly overskewed with respect to the
preferential selection process of the BA growth algorithm
�exponent 3�. By considering the average degree of the
neighbors of nodes of degree i, as discussed in Sec. III, we
can see that the random link removal algorithm generates
highly assortative networks.

B. Random node removal (RNR)

In a similar manner to Sec. IV A, we will now discuss the
possibility of creating such a steady-state structure via a pro-
cess of removing nodes �with all of their links� from an ex-
isting network at the rate of w nodes per time step. Clearly,
removing some node which has a link to an �i+1�-degree
node which in turn has a link to a j-degree node can increase
the number of i↔ j links in the system. The other processes
which can increase or decrease the number of links from i
degree nodes to j degree nodes can be similarly explained.
We consider selecting a node of some degree k for removal
with some probability kernel �k �as in the growing algo-
rithms of Sec. II�. The master equation for such a process can
thus be written for a general node selection kernel:

�Li,j�t + 1�� = Li,j�t� − w
�i�t�Li,j�t�

Xi�t�
− w

� j�t�Li,j�t�
Xj�t�

+ w�
k

�k�t�
Xk�t�

�Lk,i+1�t�
iLi+1,j�t�

�i + 1�Xi+1�t�

+ Lk,j+1�t�
jLi,j+1�t�

�j + 1�Xj+1�t�
− w�

k

�k�t�
Xk�t�

�Lk,i�t�
�i − 1�Li,j�t�

iXi�t�

+ Lk,j�t�
�j − 1�Li,j�t�

jXj�t�
 . �33�

We now specify a kernel for selecting the node to be
removed, namely, the random kernel although the approach
is general to any node selection procedure. Selecting a node
purely at random leads to �k=ck. The steady-state assump-
tions must be clarified slightly. As before

Li,j�t� = li,jM�t� . �34�

However, because we can remove more than one link
�through removing a high degree node, for example� we
must approximate for M�t�. Using the random removal ker-
nel, we can assume that on average, the selected node will
have degree equal to the mean degree of the network,

�k�t��=
2M�t�

N�t� . We can use this to write the number of remain-

ing links in the network as

Li,j�t� = li,j�M�0� − w�k�t��� = li,j
M0 −
2wM�t�

N�t�
t� ,

dLi,j

dt
= −

2wM�t�
N�t�

li,j 	 Li,j�t + 1� − Li,j�t� . �35�

Making use of the link-space identities and Eq. �35�, the
master equation Eq. �33� can be written in simple form for
the steady state as

li,j =
ili+1,j + jli,j+1

i + j − 2
. �36�

Clearly, this is identical to Eq. �30� for the random link re-
moval model of Sec. IV A and, consequently, the analysis of
the degree distribution will be the same too. It is interesting
that the random node removal and random link removal lead
to the same degree correlations.

V. MIXTURE MODEL

In this section we introduce a simple model that makes
use of only local information about node degrees as micro-
scopic mechanisms requiring global information are often
unrealistic for many real-world networks �43�. It therefore
provides insight into possible alternative microscopic mecha-
nisms for a range of biological and social networks. The
link-space formalism allows us to identify the transition
point at which lower power-law exponent degree distribu-
tions switch to higher exponent distributions with respect to
the BA preferential attachment model. While similar local
algorithms have been proposed in the literature �11,44,45�,
the strength of the approach followed here is the ability to
describe the inherent degree-degree correlations.

It is well-known that a mixture of random and preferential
attachment in a growth algorithm can produce power-law-
degree distributions with exponents �� �3,�� when new
links are only established between the new node and the
existing network �49�. It has often been assumed that a one
step random walk replicates linear preferential attachment
�43,45�. This is not true. A one step random walk is in fact
more biased towards high degree nodes than preferential at-
tachment �46� as can be easily seen by performing the pro-
cedure on a simple hub and spoke network. In this case, the
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probability of arriving at the hub tends to one for increas-
ingly large networks rather than a half as would be appropri-
ate for preferential attachment. We can use this bias to gen-
erate networks with degree distributions that have a lower
power-law exponent than the preferential attachment model,
a phenomenon also observed by Evans and Saramäki �44�. A
mixture of this approach with random attachment results in a
simple model that can span a wide range of degree distribu-
tions. This one-parameter, growing network growth model,
in which we simply attach a single node at each time step
with a single undirected link, does not require prior knowl-
edge of the existing global network structure.

The algorithm proceeds explicitly as follows: �i� pick a
node  within the existing network at random; �ii� with prob-
ability a make a link to that node; otherwise �iii� pick any of
the neighbors of  at random and link to that node. Hence
this algorithm resembles an object or “agent” making a short
random walk. This is very similar to the growing network
with redirection model introduced by Krapivsky and Redner
�11� except that the model here employs undirected links
which necessitates a random �as opposed to deterministic�
walk. Figure 6 shows examples of the resulting networks and
the corresponding �cumulative� degree distributions. Interest-
ingly, a=0 yields a network that is dominated by hubs and
spokes while a=1 yields the random attachment network.
Intermediate values of a yield networks which are neither too
ordered nor too disordered. For a�0.2, the algorithm gener-
ates networks whose degree distribution resembles the BA
preferential-attachment network �see Figs. 6 and 7�.

Our analysis of the algorithm starts by establishing the
attachment kernel, �i�t�, which in turn requires properly re-
solving the one-step random walk. The link-space formalism

provides us with an expression for the probability Pi��t� as-
sociated with performing a random walk of length one and
arriving at a degree i node �38�:

Pi��t� =
X1�t�L1,i�t�
N�t�X1�t�

+
X2�t�L2,i�t�
2N�t�X2�t�

+
X3�t�L3,i�t�
3N�t�X3�t�

+ ¯ .

�37�

This can also be written �38� as Pi��t�=
iXi�t�

N�t� � 1
knn�t� �i

where the

average is performed over the neighbors of nodes with de-

a = 1 a = 0.2 a = 0
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FIG. 6. �Color online� Top: Networks generated using the one-parameter, local information growth algorithm with a=1 �left�, a=0.2
�center�, and a=0 �right�. Initial network seed comprised of two nodes and one link. Networks drawn with PAJEK �50�. Bottom: Cumulative
degree distributions for the same networks grown to 105 nodes and ensemble-averaged over 100 networks per a value.
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Our one-step algorithm closely resembles the BA results with a
parameter value a=0.25 �see inset�.
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gree i. Note that this quantity does not replicate preferential
attachment, in contrast to what is commonly thought �43,45�.
Defining �i�t� as

�i�t� �
1

ici�t�
� 1

knn�t�� i
=

�k
Li,k�t�

k

�kLi,k�t�
=

�k
li,k�t�

k

�kli,k�t�
�38�

yields

�i�t� = aci�t� + �1 − a��i�t�ici�t� . �39�

To investigate a possible steady state, we could substitute the
above equations into Eqs. �3� and �4�. However, the nonlin-
ear terms resulting from � imply that a complete analytical
solution for li,j and ci is difficult. We leave this as a future
challenge, but stress that our formalism can be implemented
in its nonstationary form Eq. �2� numerically by iteration
with very good efficiency �38�, yielding the degree distribu-
tions shown in Fig. 7.

We can now use the link-space formalism to deduce the
parameter value at which our algorithm yields the BA degree
distribution in the long-time limit. At this value a=ac, the
node-degree distribution goes from lower to higher power-
law exponents with respect to the BA model. For this param-
eter value, the attachment probability to nodes of various
degrees is equal for both our mixture algorithm and the BA
model. Using Eqs. �12� and �39�, we have i

2 =ac+ �1−ac��ii,
and hence for large i this yields ac=1− 1

2�i
. We could then

proceed to use the exact solution of the link-space equations
for the preferential-attachment algorithm in order to infer �i
in the high i limit. However, since �i can be expanded in
terms of li,j as shown in Eq. �38� and li,j decays very rapidly
as i , j become large, we can obtain a good approximation by
using only the first two terms of Eq. �15�. This yields �
	0.66. Hence the critical value at which this simple model
approximates the BA degree distribution is ac=0.25, illus-
trated with the inset plot of Fig. 7.

VI. CONCLUSION

We have developed a new formalism which accounts for
degree-degree correlations in networks. We have employed
the formalism to produce analytic solutions to the link-space
matrix for the random attachment, BA and ER network mod-
els allowing detailed analysis of the degree correlations
therein. We have introduced a cumulative implementation of
the formalism which can be used to compare link-space ma-
trices and might also be applied to empirical networks. We
have shown that a perfectly nonassortative network can be
generated with arbitrary degree distribution. We have also
demonstrated the possiblility of a steady state of the degree
distribution and of the two-point degree correlations for
simple decaying networks through deriving the static, nor-
malized link-space matrix for such a process. Employing the
link-space formalism allowed us to accurately describe a
simple one-parameter network growth algorithm which is
able to reproduce a wide variety of degree distributions with-
out any global information about node degrees. We have
used the framework to show that a one-step random walk

does not replicate preferential attachment except in the par-
ticular case of a perfectly nonassortative network. Indeed this
in itself represents a criterion for perfect nonassortativity.
While the present paper focuses on introducing and illustrat-
ing the use of the link-space formalism for a variety of model
networks, we stress that its applicability is far more general.
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APPENDIX A: EXACT SOLUTION
OF RANDOM ATTACHMENT

For the random attachment algorithm, where one new
node is added to the existing network with one new link at
each time step, the link-space master equation can be ex-
pressed for the steady state as

li,j =
li−1,j + li,j−1

3
, i, j � 1,

l1,j =
cj−1 + l1,j−1

3
, j � 1,

l1,1 = 0. �A1�

It is easy to populate the link-space matrix numerically, just
from the degree distribution ci=2−i obtained from solving the
node-space recurrence relation and from the link-space mas-
ter equation �A1�. At first glance, the solution to the master
equation �A1� would be of the form �check by substitution�

li,j =
b

2i+j3i+j . �A2�

However, the boundary conditions, which could be inter-
preted as influx of probability into the diffusive matrix, are
such that this does not hold. We can actually solve the nor-
malized link-space matrix for this model exactly. Consider
the values ci as being influxes of probability into the top and
left of the link-space matrix. We can compute the effect of
one such element on the value in the matrix li,j. Each step in
the path of probability flux reflects an extra factor of 1

3 . First,
we will consider the influx effect from the top of the matrix
as in Fig. 8. The total path length from influx cx−1 to element
li,j is simply i+ j−x. The number of possible paths between
cx−1 and element li,j can be expressed as � j−x+i−1

j−x
�. We can

similarly write down the paths and lengths for influxes into
the left-hand side of the matrix. The first row �and column�
can be described as

l1,j =
cj−1 + l1,j−1

3
=

2−�j−1� + l1,j−1

3
= �

k=1

j−1
1

3k2 j−k . �A3�

Subsequent rows can be similarly described. So, for i , j�1
an element can be written:
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li,j =
li−1,j + li,j−1

3
= �

x=2

j 
i − 1 + j − x

j − x
�

3�i+j−x�2�x−1� + �
x=2

i 
i − 1 + j − x

i − x
�

3�i+j−x�2�x−1� .

�A4�

The results can be observed in Fig. 9 where a comparison to
the numerically populated link-space matrix is made.

APPENDIX B: EXACT SOLUTION OF PREFERENTIAL
ATTACHMENT

In the BA model, when adding one new link with one
undirected node per time step, the steady-state solution of the
node-space master equation leads to the degree distribution

ci =
4

i�i + 1��i + 2�
, �B1�

which can be checked easily by substitution. Substituting the
attachment probability kernel �i	 ici /2 into the link-space

master equation Eq. �4�, we obtain the master equations for
the link-space for this network growth algorithm:

li,j =
�i − 1�li−1,j + �j − 1�li,j−1

2 + i + j
, i, j � 1,

l1,j =
�j − 1�cj−1 + �j − 1�l1,j−1

3 + j
, j � 1,

l1,1 = 0. �B2�

Again, it is easy to populate the matrix numerically just by
implementing the node and link-space equations. At first
glance, the solution to the master equation �B2� would be of
the form �check by substitution�

li,j =
A

i�i + 1�j�j + 1�
, �B3�

where A is a constant. This would imply for the degree dis-
tribution

ci =
A

i2�i + 1�
. �B4�

Summing over the entire node-space would give A= 6
�2−6

.
However, the boundary conditions �which could be inter-
preted as influx of probability into the diffusive matrix� are
such that this solution does not hold. This is evident when
comparing Eq. �B4� with Eq. �B1�, which compares to simu-
lated networks well.

We can obtain an exact �although somewhat less pretty�
solution by tracing fluxes of probability around the matrix
and making use of the previously derived degree distribution.
We can rewrite our link-space master equation, �B2�, in
terms of vertical and horizontal components:

li,j = �i,jli−1,j + �i,jli,j−1,

l1,j = �i,j�l1,j−1 + cj−1� ,

l1,1 = 0, �B5�

where

�i,j =

�i−1

ci−1

1 +
�i

ci
+

� j

cj

,

�i,j =

� j−1

cj−1

1 +
�i

ci
+

� j

cj

. �B6�

By considering the probability fluxes as shown in Fig. 10,
we can write the individual elements in the link-space matrix
as

l1,j = �
y=2

j 
cy−1�
x=y

j

�1,x� ,

c
x−1

l
1,x

l
2,x

l
1,x+1

l
i,j

FIG. 8. The paths of probability flux from cx−1 influencing ele-
ment li,j. Each arrow �step� represents a further factor of 1

3 .

10
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j
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j
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numerical implementation

FIG. 9. �Color online� Comparison of the numerically derived
link-space matrix �markers� and the analytic solution �solid lines�
for random node attachment for the first 20 rows �i values� of the
link-space matrix. The numerical implementation populates the
link-space matrix directly from the degree distribution and the
steady-state link-space recurrence relations.
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li,j = �
y=2

j 
li−1,y�i,y �
x=y+1

j

�i,x� + li,1�
x=2

j

�i,x,

l1,1 = 0. �B7�

Note that we have yet to introduce the attachment prob-
ability kernels and the analysis so far is general. Using the
preferential attachment kernel, �i	

ici

2 , we can write our
component-wise factors for the master equation as

�i,j =
i − 1

i + j + 2
,

�i,j =
j − 1

i + j + 2
. �B8�

Substituting Eq. �B8� into Eq. �B7� and using the previously
derived degree distribution of Eq. �B1� yields for the first
row

l1,j = �
y=2

j 
 4

y�y − 1��y + 1��x=y

j
x − 1

x + 3
�

=
4�j − 1�!
�j + 3�! �

y=2

j

�y + 2� =
2�j + 6��j − 1�

j�j + 1��j + 2��j + 3�
. �B9�

Subsequent rows can be written as

li,j = li,1
�j − 1�!�3 + i�!

�2 + i + j�!

+ �
y=2

j

li−1,y�i − 1�
�j − 1�!

�2 + i + j�!
�1 + i + y�!

�y − 1�!

=
�j − 1�!

�2 + i + j�!��3 + i�!li,1 + �i − 1��
y=2

j

li−1,y
�1 + i + y�!

�y − 1�!  .

�B10�

Rewriting this gives

li,j =
�j − 1�!

�2 + i + j�!
�Ki + Ei−1,j� , �B11�

where the meaning of Ki and Ei−1,j follows from Eq. �B10�.
Clearly, we can write Eq. �B11� for li−1,y as

li−1,y =
�y − 1�!

�1 + i + y�!
�Ki−1 + Ei−1,y� . �B12�

Substituting Eq. �B12� into Eq. �B10� yields

li,j =
�j − 1�!

�2 + i + j�!�Ki + �i − 1��
y=2

j

�Ki−1 + Ei−1,y� .

�B13�

In order to solve this recurrence relation, we define an op-
erator for repeated summation, Sj,y

n , such that

Sj,y�f�y�� = �
y=2

j

f�y� ,

Sj,y
n �f�y�� = �

yn=2

j

�
yn−1=2

yn

�
yn−2=2

yn−1

¯ �
y3=2

y4

�
y2=2

y3

�
y=2

y2

f�y� .

�B14�

The first subscript denotes the initial variable to be summed
over and the second the final limit. A few examples of this
operation will clarify its use:

Sj,y
0 �f�y�� = f�y� ,

Sj,y�1� = j − 1,

Sj,y
2 �1� = Sj,y�y� − Sj,y�1� =

1

2
�j2 − j� ,

Sj,y
3 �1� =

1

6
�j3 − j� ,

Sj,y�y� =
j�j + 1�

2
− 1,

Sj,y
2 �y� =

1

6
�j3 + 3j2 − 4j� . �B15�

We can use this operator in our expression for the element li,j
in Eq. �B13� and expand to the easily derived value E2,y:

c
1

c
2

c
3

c
4

c
j−2

c
j−1

l
1,1

l
1,2

l
1,3

l
1,4

l
1,5

l
1,j−1

l
1,j

0

ϒ
1,3

ϒ
1,4

ϒ
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ϒ
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ϒ
1,2

ϒ
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ϒ
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ϒ
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ϒ
1,j

ϒ
1,j−1

l
i−1,1

l
i−1,2
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i−1,5
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i−1,j−1

l
i−1,j
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i,1
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i,5
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i,j−1

l
i,j

ϒ
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ϒ
i,3

ϒ
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ϒ
i,j

Ψ
i,2

Ψ
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Ψ
i,4

Ψ
i,5

Ψ
i,j

Ψ
i,j−1

FIG. 10. The components of flux of probability around the link-
space matrix. This is general to any attachment kernel. An element
within the link-space matrix can be built up from contributing ele-
ments and the appropriate factors.

SMITH et al. PHYSICAL REVIEW E 77, 036112 �2008�

036112-14



li,j =
�j − 1�!

�2 + i + j�!
�Ki + �i − 1�Sj,y�Ki−1 + Ei−1,y��

=
�j − 1�!

�2 + i + j�!
�Ki + �i − 1�Ki−1Sj,y�1� + �i − 1��i − 2�Sj,y

2 �Ki−2 + Ei−2,y��

=
�j − 1�!

�2 + i + j�!
�Ki + �i − 1�Ki−1Sj,y�1� + �i − 1��i − 2�Ki−2Sj,y

2 �1� + �i − 1��i − 2��i − 3�Ki−3Sj,y
3 �1�

+ ¯ + �i − 1��i − 2��i − 3� � ¯ � 2K2Sj,y
i−2�1� + �i − 1��i − 2� � ¯ � 2Sj,y

i−2�E2,y�� . �B16�

We can express E2,y in terms of the operator S too:

E2,y = 4Sy,y�2Sy,y�1� + Sy,y�y�� . �B17�

The element li,j can be expressed as

li,j =
�j − 1�!

�2 + i + j�!�4�i − 1�!�2Sj,y
i �1� + Sj,y

i �y��

+ �
m=2

i
�i − 1�!
�m − 1�!

KmSj,y
i−m�1� .

This form is somewhat obtuse as the calculation of the op-
erator values is less than obvious. However, we can trans-
form to a more easily interpreted operator W�n� analogous to
S but with different limits such that

Wj,y�f�y�� = �
y=1

j

f�y� ,

Wj,y
n �f�y�� = �

yn=1

j

�
yn−1=1

yn

�
yn−2=1

yn−1

¯ �
y3=1

y4

�
y2=1

y3

�
y=1

y2

f�y� .

�B18�

While, at first glance, it looks like little progress has been
made, we only need evaluate the repeated operation on initial
function f�y�=1. This is exactly solvable and we can rewrite
in terms of a function G�n�, dropping the superfluous y sub-
scripts:

Gj�n� = Wj
n�1� ,

Gj�n� = � �j + n − 1�!
n!�j − 1�!

for n 
 0

0 for n � 0.
� �B19�

The inductive proof associated with Eq. �B19� can be under-
stood by path counting for some repeating binomial process
and is an intrinsic property of the combinatorial choose co-
efficient. Consider a repeated coin toss over x steps. The
number of ways of achieving n+1 successes after these x
iterations is � x

n+1
�. Now, the occurrence of this last success

could have happened on the �n+1�th iteration or the follow-
ing one, or any of the subsequent iterations until the xth one.
For the last successful outcome to occur on the mth step, n

successful outcomes must have occurred in the previous
steps. The number of ways this could have occurred is � m−1

n
�.

Clearly, summing over all possible m values, the total pos-
sible paths resulting in n+1 successes must equate to � x

n+1
�.

For clarity, this is depicted in Fig. 11. To reach point B
from A in the binomial process, one of the steps w, x, y, or z
must be traversed, after which there is only one route to B.
Consequently, the number of paths between A and B utilizing
step w is the same as the number of paths between A and W.
Similarly, the number of paths between A and B utilizing
step x is the same as the number of paths between A and X
and so on. The number of paths between A and B can be built
expressed as the sum of the paths A→W, A→X, A→Y, and
A→Z.

We incorporate this behavior into our proof for the solu-
tion of Gj�n�.

Gj�n� = 
 j + n − 1

n
� ,

Gj�n + 1� = �
1

j

Gj�n� = �
1

j 
 j + n − 1

n
� = 
 j + n

n + 1
� .

�B20�

As G�1�= � j
1

�= j, this inductive proof holds for all n and the
following relations hold:

Sn�1� = G�n� − G�n − 1� ,

A
B

W
X

Y
Z

w
x

y
z

FIG. 11. A binomial process over seven steps. The number of
paths between A and B can be expressed as the sum of the paths
A→W, A→X, A→Y, and A→Z.
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Sn�j� = G�n + 1� − G�n − 1� . �B21�

We can now write the element in our link-space matrix for
preferential attachment exactly as our function G�n� is easily
evaluated as

li,j =
4�j − 1�!�i − 1�!

�j + i + 2�! 
G�i + 1� + 2G�i� − 3G�i − 1�

+
1

2�
k=2

i

�k − 1��k + 6��G�i − k� − G�i − k − 1��� .

�B22�

A comparison of this solution is made to a numerically popu-
lated link-space matrix in Fig. 12.

APPENDIX C: DEGREE DISTRIBUTION
OF DECAYING NETWORK

The link-space master equation for the steady state of the
decaying networks of Sec. IV is written as

li,j =
ili+1,j + jli,j+1

i + j − 2
. �C1�

The number of 1↔1 links does not reach a steady state for
this process. However, we can investigate the properties of
the rest of the links in the network which do reach a steady
state by neglecting these two-node components. In a similar
manner to �11� we can make use of a substitution to find a
solution to this recurrence equation, namely, for i+ j�2 as

li,j = ri,j
�i + j − 3�!

�i − 1�!�j − 1�!
. �C2�

From this, we can obtain

ri,j = ri+1,j + ri,j+1. �C3�

This has the simple solution:

ri,j =
A

2i+j . �C4�

The link-space for this system can be written for i+ j�2 as

li,j =
A

2i+j

�i + j − 3�!
�i − 1�!�j − 1�!

. �C5�

Although the summation over this link-space matrix di-
verges, �i� jli,j→�, we can use the form of Eq. �C5� to infer
the shape of the degree distribution. Recalling that

ci =
M

N

�kli,k

i
, �C6�

we can write for the degree distribution, neglecting the two
node components in the network, as

c1 =
MA

N
�
k=2

�
�k − 2�!

�k − 1�!21+k ,

ci =
MA

Ni
�
k=1

�
�i + k − 3�!

�i − 1�!�k − 1�!2i+k , i � 1. �C7�

The c1 value can be solved by considering the Maclaurin
series of the function ln�1+x� �as a historical note, this
was done by Mercator as early as 1668� and evaluating for
x=− 1

2 :

ln�1 + x� = �
k�=1

�
�− 1�k�

k�
xk�,

ln
1

2
� = − �

k�=1

�
1

k�2k�
= − ln�2� . �C8�

Rearranging Eq. �C7� and letting k=k�+1 yields

c1 =
MA

N
�
k=2

�
1

�k − 1�21+k =
MA

N
�
k�=1

�
1

k�2k�+2
=

MA

4N
ln�2� .

�C9�

For node degree greater than one, the solution of Eq. �C7�
requires a simple proof by induction. Consider the function
Q�i�� defined for positive integer i� as

Q�i�� = �
k�=0

� 
i� + k�

k�
�

2k�+i�
. �C10�

We can write Q�i�+1� with similar ease as

Q�i� + 1� = �
k�=0

� 
i� + k� + 1

k�
�

2k�+i�+1
. �C11�

This leads to

10
0
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1
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2
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10
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j

l i,
j
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FIG. 12. �Color online� Comparison of the numerically derived
link-space matrix �markers� and the analytic solution �solid lines�
for preferential attachment. The numerical implementation popu-
lates the matrix from the solution of the degree distribution and the
link-space recurrence equations.
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2Q�i� + 1� − Q�i�� = �
k�=0

� �
i� + k� + 1

k�
� − 
i� + k�

k�
�� 1

2k�+i�

= �
k�=1

� 
i� + k�

k� − 1
� 1

2k�+i�
. �C12�

A quick substitution of k�=k�−1 leads to

2Q�i� + 1� − Q�i�� = �
k�=0

� 
i� + k� + 1

k�
� 1

2k�+i�+1
= Q�i� + 1�

⇒ Q�i� + 1� = Q�i�� ,

Q�1� = 2 = Q�i�� , �C13�

which holds for all i�. Rearranging Eq. �C7� and using some
simple substitutions, i�= i−2 and k�=k−1, we can derive the
following:

ci =
MA

Ni
�
k=1

�
�i + k − 3�!

�i − 1�!�k − 1�!2i+k

=
MA

Ni�i − 1��k=1

�
�i + k − 3�!

�i − 2�!�k − 1�!2i+k

=
MA

Ni�i − 1� �
k�=0

� 
i� + k�

k�
�

2i�+k�+3
=

MA

4N

1

i�i − 1�
. �C14�

We can normalize this degree distribution such that �ici=1
and so for the decaying network without the two node com-
ponents �the 1↔1 links�, the degree distribution can be ex-
pressed as

A =
4N

M�1 + ln�2��
,

c1 =
ln�2�

1 + ln�2�
,

ci =
1

�1 + ln�2��i�i − 1�
, i � 1. �C15�
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